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Climate sensitivity to doubled CO2 is a widely-used metric of the large-scale response to ex-

ternal forcing. Climate models predict a wide range for two commonly used definitions: the

transient climate response (TCR: the warming after 70 years of CO2 concentrations that rise

at 1% per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature

change following a doubling of CO2 concentrations). Many observational datasets have been

used to constrain these values, including temperature trends over the recent past1–6, infer-

ences from paleo-climate7, 8 and process-based constraints from the modern satellite era9, 10.

However, as the IPCC recently reported11, different classes of observational constraints pro-

duce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived

from recent observations must account for the efficacy of each forcing active during the his-

torical period. When we use single forcing experiments to estimate these efficacies and calcu-

late climate sensitivity from the observed twentieth-century warming, our estimates of both

TCR and ECS are revised upward compared to previous studies, improving the consistency

with independent constraints.
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The concept of radiative forcing is used to compare the effects of different physical drivers

on the Earth’s energy budget. By assumption, two forcing agents that produce a similar radiative

imbalance would initiate similar feedbacks and have the same global mean temperature response12.

However, there can be variations in the size and type of feedbacks engendered by a specific

forcing13, mainly due to geographical variations in the forcing magnitude. These variations can

be characterized by an efficacy that scales for the differences in temperature response. Forcings

that project more strongly on the Northern Hemisphere, land or polar regions are systematically

more effective at changing temperatures than an equivalent amount of CO2, whose forcing is more

uniformly distributed throughout the globe13, 14. The converse is true for forcings localized in the

Southern Hemisphere or ocean regions.

Some published constraints on ECS, particularly from the Last Glacial Maximum, have at-

tempted to incorporate forcing efficacies into their assessments 15, 16, although none of the recently

published constraints derived from modern trends have fully done so3–6. However, ECS does not

provide the information on transient, short-term climate impacts that TCR reflects. It therefore

remains unclear to what extent efficacies derived for equilibrium results are applicable to transient

situations where ocean heat uptake plays an important role17–20.

An analysis of transient simulations with interactive aerosols21 indicated that the combina-

tion of anthropogenic aerosols, ozone, and land use change affect global temperature trends more

efficiently than does CO2 forcing alone (i.e., the efficacy of the combination is greater than one).

However, the specific contributions of individual forcings have thus far remained obscure. In this
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paper, we use a large suite of single-forcing simulations to estimate the impact of combined forc-

ings in transient simulations for the historical period and show that proper consideration of the

resulting efficacies implies that previously-derived constraints on ECS and TCR should be revised

upward.

For the Coupled Model Intercomparison Project, Phase 5 (CMIP5), the NASA Goddard In-

stitute for Space Studies (GISS) modeling group performed “historical” simulations using model

version GISS-E2-R spanning 1850–2005 driven by estimates of relevant natural and external

forcings22. Multiple simulations over the same time period using single forcings or combina-

tions of forcings were also submitted to the CMIP5 “historicalMisc” archive, including simula-

tions forced by only well-mixed greenhouse gases (GHG), anthropogenic aerosols (AA), ozone

(Oz), solar variations (Sl), volcanoes (Vl), or land use changes (LU). These unique ensembles al-

low us to replicate climate sensitivity calculations in a “perfect model” framework, in which we

have all the information we need to determine transient and equilibrium sensitivities using previ-

ously published methods, which can be compared to the actual TCR (1.4�C) and ECS (2.3�C) of

the GISS-E2-R model23, 24.

TCR depends on the transient changes in global mean temperature �T and radiative forcing

�F . To calculate ECS, we also require estimates of the rate of ocean heat content (OHC) change

�Q. We use �Q here instead of the more conventional TOA imbalances25 in order to restrict our

analysis to observables that have been used in previous analyses. Both �Q and �T are readily

estimated from model output (see Methods). However, there are several different definitions of
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radiative forcing13, 25, and we use two methods to capture different aspects of the planetary response

to external agents. First, we calculate the annual-mean, global instantaneous radiative forcing (iRF)

as the initial radiative flux change, evaluated at the tropopause in an attempt to anticipate the effect

of rapid stratospheric adjustments26 for each year 1900–2005 (Methods). Second, we calculate the

effective radiative forcing (ERF), which incorporates changes in the troposphere and land surface

that are rapid compared to the ocean temperature response using fixed-SST experiments forced

with year-2000 values of each forcing (Methods).

We first estimate the climate sensitivities using the instantaneous radiative forcings �F ,

combined with the historical annual global mean temperature anomaly �T and ocean heat uptake

anomaly �Q for each non-overlapping 10-year period beginning with 1906–1915 and ending with

1996–2005 (Methods, Figure S1).

For each decade, we plot the temperature anomaly versus forcing (for TCR, Fig. 1(a)) or the

difference between forcing and ocean heat uptake anomalies (for ECS, Fig. 1(b)). Using

�F = �TCR�T ; �F = �ECS�T +�Q (1)

we calculate � as the slope of the best-fit line in both cases4. Using only the first and last decades

gives comparable results. The TCR and ECS then given by

TCR =
F2⇥CO2

�TCR

; ECS =
F2⇥CO2

�ECS

(2)

where F2⇥CO2 = 4.1 Wm�2 is the model forcing (iRF) for CO2 doubling13. These linear methods

assume that both �ECS and �TCR are constant in time, despite evidence 27 that this may result in

an underestimate of the “true” values.
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The ratios of single-forcing TCR and ECS to CO2-only TCR and ECS define transient and

equilibrium efficacies, respectively13. These are measures of the enhancement (or suppression) of

the climate response to the forcing relative to the climate response to greenhouse gases. Table S1

lists the transient and equilibrium efficacies calculated from the GISS-E2-R single-forcing runs,

along with uncertainties derived from the 5-member ensembles for each forcing.

The global mean climate responses to different forcings may differ because of the character

of the forcings themselves (such as their geographical or vertical distribution) and because different

forcings induce different patterns of surface warming or cooling, thereby affecting the net top-of-

atmosphere radiation imbalance, and thus the ocean heat uptake rate �Q. The evolving pattern of

temperature change may be incorporated into a global mean framework as an “ocean heat uptake

efficacy”18. Our methodology does not differentiate between these two physical mechanisms, and

we note that a substantial portion of what we call “forcing efficacy” may be due to differences

between the ocean heat uptake induced by CO2 forcing and the heat uptake induced by the forcing

in question.

In keeping with previous studies13, 14, 21, 28, we find that aerosols have an enhanced transient

climate response by roughly 30% and equilibrium response by 50%. Additionally, the transient

and equilibrium efficacies of ozone and volcanic forcing are significantly less than unity in the

perfect model framework; other studies29, 30 have also found that volcanic forcing has a smaller

impact on global temperatures than an equivalent change in greenhouse gas forcing. The efficacies

for LU and Sl calculated in this framework are uncertain due to the small changes in these forcing
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agents over the historical period, although we do find that the best estimates for LU transient and

equilibrium efficacy generally exceed 1, likely due to hemispheric asymmetry and land bias in this

forcing.

Previous work13 found that certain equilibrium efficacies, notably anthropogenic tropospheric

aerosols, decrease toward unity when the iRF is replaced by the ERF to incorporate tropospheric

adjustments. This raises the possibility that the use of effective, rather than instantaneous radia-

tive forcing, may render the sensitivities from GHG-only and historical simulations more directly

comparable. We therefore re-calculate efficacies using the ERFs (open circles in Figs. 1 and S1).

While aerosol transient and equilibrium efficacies are indeed reduced when using ERF (Table S1),

TCR and ECS calculated from the combined effective radiative forcings within the “historical”

experiment remain biased low compared to the GHG-only values (Fig. 1).

Since the forcings and temperature responses are additive, we can show in a vector plot

the relative contributions of each forcing to the discrepancies between sensitivities derived from

CO2-only simulations and those estimated from historical simulations (Fig. 1c-d). This shows

clearly that the low sensitivities of the historical runs (compared to values obtained from CO2-only

simulations) results from the higher efficacy of aerosols (when calculated using iRF) and land-use

change, along with the lower efficacy of ozone and volcanic responses. Figs 1(c) and (d) indicate

that many of the forcings over the recent historical period are less effective at changing global

temperatures than those that cool the surface. We note that aerosol efficacy when calculated with

ERF is compatible with unity; implying that differences between the historical sensitivities and
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CO2-only sensitivities are attributable to the other forcings.

Scaling �F for each of the single-forcing runs by the relevant efficacy yields sensitivities

estimated from the historical runs comparable to those derived from CO2-only runs (Methods,

Figure S2); since the forcings and temperatures add linearly, the resulting calculation with the

historical all-forcing run scaled by the historical efficacy will also yield the same sensitivity as in

the GHG-only runs.

What are the implications of our estimated forcing efficacies for constraints on sensitivity

based on historical observations? Using our perfect model analysis, we can combine the model

efficacies with historical forcings and the temperature response to estimate the observed climate

sensitivity for comparison to existing calculations. Here, we make no attempt to evaluate the

quality of existing observations or their suitability for estimating climate sensitivity; rather, we seek

to replicate existing estimates and show how they change once efficacies are taken into account.

Assuming that all forcings have the same transient efficacy as greenhouse gases, and fol-

lowing a previous study4, the best estimate (median) for TCR is 1.3�C (see Methods). However,

scaling each forcing by our estimates of transient efficacy (determined from either iRF or ERF),

we obtain a best estimate for TCR of 1.8�C (Fig. 3(a)). This scaling simultaneously considers both

forcing and ocean heat uptake efficacy. Other estimates of TCR 3, 21, which differ slightly due to

choices of base period and uncertainty estimates and the aerosol forcing used, are similarly revised

upward when using calculated efficacies (Fig. 3).
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We apply the same reasoning to estimates of ECS. Using an estimate4 of the rate of recent

heat uptake �Q = 0.65 ± 0.27 W m�2, we find, assuming all equilibrium efficacies are unity, a

best estimate of ECS = 2.0�C, comparable to the previous result4 of 1.9�C. However, as with TCR,

accounting for differences in equilibrium forcing efficacy revises the estimate upward; our new

best estimate (using efficacies derived from the iRF) is 2.9�C (Fig. 2(a)). If efficacies are instead

calculated from the ERF, the best estimate of ECS is 3.0�C (Fig. 2(b)). As for TCR, alternate

estimates of ECS are revised upward when efficacies are taken into account (Fig. 2).

Estimates of both ECS and TCR are very sensitive to errors and uncertainties in the observa-

tions. Differences in the spread and best estimates for ECS and TCR (Table S2) will depend on the

base periods used, estimates of ocean heat uptake, and on the aerosol forcing and its uncertainty.

However, we note that in all cases, incorporating differing transient and equilibrium efficacies

results in higher estimates for TCR and ECS.

The calculated efficacies used here are based on a single model. In order to increase con-

fidence in these values it would be necessary to perform the suite of single-forcing experiments

with additional models. These experiments were a low priority in CMIP5, and the historicalMisc

archive is sparse. Moreover, very few groups performed comparable calculations of radiative forc-

ings associated with each forcing agent. In cases where forcing is small over the whole historical

period (LU, Sl) uncertainty is large. Simulations in which land use changes or solar forcings are

amplified may be necessary to constrain the efficacy of these forcings.

We stress the importance of clearly defining “radiative forcing”. While TCR and ECS esti-
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mates are revised upward regardless of the radiative forcing definition used to calculate efficacies,

this is attributable to different factors when effective, rather than instantaneous, radiative forcing

is used. The major difference is the calculated efficacy of anthropogenic aerosol forcing, which

approaches unity when fast tropospheric adjustments are incorporated. Previous studies involving

the GISS model13 found that rapid cloud changes in both hemispheres result from the rapid adjust-

ment to aerosol forcing; effective radiative forcing is thus more hemispherically symmetric than

instantaneous aerosol forcing. This increased symmetry may account for the reduced aerosol effi-

cacy when calculated with ERF. However, further study in a multi-model context will be necessary

to better constrain the efficacy associated with historical aerosol changes.

GISS ModelE2 is more sensitive to CO2 alone than it is to the sum of the forcings that were

important over the past century. This is largely a result of the low efficacy of ozone and volcanic

forcings and the high efficacy of aerosol and LU forcing (which have had a cooling effect over

the historical period), although further study is needed to explore model differences in simulating

efficacies and to enhance confidence in these estimates. Climate sensitivities estimated from recent

observations will therefore be biased low in comparison with CO2-only simulations due to an

accident of history: when the efficacies of the forcings in the recent historical record are properly

taken into account, estimates of TCR and ECS must be revised upward. Accounting for this results

in recent historical estimates for TCR and ECS that are more consistent with constraints based

on paleoclimate data and process-based constraints from modern climatology. Methodologies that

attempt to combine independently-derived constraints on sensitivity should ensure that such biases

are corrected before any synthesis is performed.
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15. Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years?

Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci.

Revs. 29, 129–145 (2010).

16. Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the

Last Glacial Maximum. Science 334, 1385–1388 (2011).

11



17. Rose, B. E., Armour, K. C., Battisti, D. S., Feldl, N. & Koll, D. D. The dependence of

transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake.

Geophysical Research Letters 41, 1071–1078 (2014).

18. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient

climate change. Journal of Climate 23, 2333–2344 (2010).

19. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional

feedbacks. J. Clim. 26, 4518–4534 (2013).

20. Kummer, J. R. & Dessler, A. E. The impact of forcing efficacy on the equilibrium climate

sensitivity. Geophys. Res. Letts. 41, 3565–3568 (2014).

21. Shindell, D. T. Inhomogeneous forcing and transient climate sensitivity. Nature Climate

Change 4, 274–277 (2014).

22. Miller, R. L. et al. CMIP5 historical simulations (1850–2012) with GISS ModelE2. J. Adv.

Model. Earth Syst. 6, 441–477 (2014).

23. Nazarenko, L. et al. Future climate change under rcp emission scenarios with giss modele2.

Journal of Advances in Modeling Earth Systems 7, 244–267 (2015).

24. Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the

CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).

25. Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity.

Geophys. Res. Lett. 31 (2004).

12



26. Hansen, J. E. et al. Forcings and chaos in interannual to decadal climate change. J. Geophys.

Res. 102, 25,679–25,720 (1997).

27. Gregory, J. M., Andrews, T. & Good, P. The inconstancy of the transient climate response

parameter under increasing co2. Philos. Trans. R. Soc. London in press (2015).

28. Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth

century. Nature Geoscience 2, 294–300 (2009).

29. Tomassini, L., Reichert, P., Knutti, R., Stocker, T. F. & Borsuk, M. E. Robust bayesian un-

certainty analysis of climate system properties using Markov Chain Monte Carlo methods. J.

Climate 20, 1239–1254 (2007).

30. Merlis, T. M., Held, I. M., Stenchikov, G. L., Zeng, F. & Horowitz, L. W. Constraining

transient climate sensitivity using coupled climate model simulations of volcanic eruptions.

Journal of Climate 27, 7781–7795 (2014).

Acknowledgements Climate modeling at GISS is supported by the NASA Modeling, Analysis and Pre-

diction program and resources supporting this work were provided by the NASA High-End Computing

(HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center.

Competing Interests The authors declare that they have no competing financial interests.

Correspondence Correspondence and requests for materials should be addressed to Kate Marvel (email:

kate.marvel@nasa.gov).

13



Author contributions KM and GS designed the research and wrote the paper, with input from RM. RM

and LN provided the forcing data. LN ran the climate model experiments. All authors contributed to the

interpretation of the results.

14



15



Figure 1 (a) Non-overlapping ensemble average decadal mean changes in tempera-

ture and instantaneous radiative forcing for GISS-E2-R single-forcing ensembles (filled

circles). TCR is calculated from the slope of the best-fit line. Also shown are 1996–2005

temperature changes and effective radiative forcing (open circles). In this case, TCR is

the quotient of the temperature and ERF estimates. Following 4, straight purple contours

show isolines of TCR from 0 to 4 (b) Same, but changes in the rate of ocean heat uptake

are subtracted from forcing changes. ECS is calculated from the slope of the best-fit line

(for iRF) or from the quotient (for ERF). (c) 1996–2005 average �T and instantaneous

(filled arrows) and effective (white arrows) radiative forcing for each single-forcing exper-

iment. The transient climate response for each experiment in each case is the slope of

the line. The vector sum of the single-forcing values does not substantially differ from the

historical values (circles) and the TCR of the sum and historical experiments is less than

that of the GHG-only experiment. The published GISS-E2-R TCR (1.4� C) is shown as a

dashed black line. (d) Same as (c), but the x-axis shows the difference of 1996–2005 av-

erage forcing and estimated ocean heat uptake. The slope of each line is the equilibrium

climate sensitivity. The published GISS-E2-R ECS (2.3� C) is shown as a dashed black

line.

Figure 2 (a) TCR (x-axis) and ECS (y-axis) best-guess values (circles) and 95% joint

confidence intervals (shaded regions). These are first calculated assuming all efficacies =

1 (darker colors) and then incorporating efficacies calculated using instantaneous radia-

tive forcing (iRF). Arrows indicate the revisions in TCR and ECS when efficacies are taken
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into account. Estimates from three published works3,4,21 and their revisions are shown.

Original (red) and revised (orange) TCR and ECS probability distribution functions calcu-

lated using Otto et al. data are shown on the x- and y-axes, respectively. (b) Same, but

efficacies are calculated using effective radiative forcing (ERF).
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METHODS: Implications for climate sensitivity
from the response to individual forcings

Kate Marvel1,2, Gavin A. Schmidt2, Ron L. Miller2,
Larissa Nazarenko1,3

October 1, 2015

1 Simulations

We use a large suite of historical simulations from the GISS-E2-R model[12] with
multiple subsets of relevant forcings as archived in the CMIP5 database. Specif-
ically, we use a 6-member ensemble of simulations with ”historical” forcings in-
cluding well-mixed greenhouse gases, anthropogenic aerosols, land use/land cover
change, ozone changes, and volcanic and solar forcing[8]. Additionally, we use
5-member ensembles with each of the forcings run separately (”historicalMisc”
simulations).

The model consists of GISS ModelE2 for the atmosphere coupled to the
Russell ocean model. All simulations use physics version 1 (Non-Interactive at-
mospheric composition - NINT), in which aerosols and ozone are read in via
pre-computed transient aerosol and ozone fields. The aerosol indirect e↵ect is
parameterized. Further information on the model configuration and specific ex-
periments can be found online at http://data.giss.nasa.gov/modelE/ar5/.

2 Perfect Model Framework

The GISS model output provides all the diagnostics necessary to determine the
transient climate response and equilibrium climate sensitivity for each single-
forcing ensemble and for the “historical” ensemble using previously established
methodologies. Surface air temperatures and ocean potential temperatures are
available as standard CMIP5 output. Because radiative forcing calculations were
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not required in CMIP5, we have made iRF time series and ERF values for the
GISS model simulations available on the GISS website at http://data.giss.
nasa.gov/modelforce/.

In this section, we describe the calculations performed in order to obtain
�T , �F , and �Q from the GISS-E2-R simulations. The relevant time series
and values are plotted in Figure S1, and described in further detail below.

2.1 Instantaneous radiative forcing (iRF) definition

We calculate the TOA radiative forcings associated with each climate driver using
a radiation-only calculation for each year between 1851 and 2005 with the driver
changing, but with all other variables set at pre-industrial (1850) values. In each
case, we approximate the e↵ect of rapid stratospheric adjustment by evaluating
the forcing at the tropopause instead of top of atmosphere [6, 8, ]. The 10-year
running means of iRF for each single-forcing ensemble are plotted as dashed lines
in Figure S1(a)-(g) .

2.2 E↵ective radiative forcing (ERF) definition

The e↵ective radiative forcing is calculated from climate model runs in which
the forcing is held constant at year 2000 values and SSTs are fixed at their 1850
values. Following [4], we define e↵ective radiative forcing as

ERF = Fo +�Ta/�

where Fo is the flux change at the top of the atmosphere, �Ta the global surface
air temperature change with SSTs fixed at pre-industrial values (i.e., as they were
in 1850), and � taken from previously published GISS-E2-R simulations . This
technically assumes unit e�cacy for all forcings, but the response term �Ta/� is
in general small compared to the TOA flux change. All values are ten-year means.
When ERF is used, TCR and ECS are calculated as the quotient of 1996–2005
average �T and year-2000 ERF and year-2000 ERF minus 1996–2005 trends in
ocean heat uptake, respectively. The calculated ERF 10-year averages centered
on the year 2000 are shown as unfilled dots in Figure S1(a)-(g). We obtain
similar results when ERF is calculated using 30-year averages.
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Figure S1: (a-g): Ensemble-average instantaneous radiative forcings and ocean
heat uptake rates (thick lines) and individual ensemble members (thin) for GISS-
E2-R single-forcing experiments. All quantities are 10-year running means. Dots
represent year-2000 e↵ective radiative forcings (ERF). (h): Ensemble-average
temperature anomalies (relative to 1850) for each single-forcing simulation.
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2.3 Model ocean heat content

As in Palmer et al.[11], we calculate the ocean heat content (OHC) for every
simulation using

� =
X

i,j,k

⇢C✓i,j,kAi,jdzk (1)

where ⇢ = 3985 J kg�1 K�1 is the specific heat content, ⇢ = 1025 kg m�3 the
density of seawater, ✓ is the annual mean ocean potential temperature, and Ai,j

the area of the grid cell. Because the Russell ocean model is mass-conserving,
we multiply the area by the varying vertical layer thickness dz.

The single-forcing experiments are spun o↵ from a long pre-industrial control
run, with the first ensemble member branching after 3981 years of integration
and subsequent members branching at 20-year intervals. To account for a small
residual control run drift, we subtract the linear trend in the relevant control
run time period from each ensemble member, thereby calculating an anomaly
time series relative to the pre-industrial period. Alternate methods to assess drift
(such as a loess fit) make no significant di↵erence to our results. We estimate
the decadal rate of ocean heat uptake by calculating the best-fit linear trend to
10-year segments of OHC. Ensemble average ocean heat uptake rates for each
single-forcing simulation are shown in Figure S1(a)-(g) as solid lines.

2.4 Temperature anomalies

For each simulation, we calculate global-average, annual-average temperature
anomalies with respect to pre-industrial control averages. Any temperature drift
in the pre-industrial control run is removed using the same procedure as used for
ocean heat content. These time series are plotted in Figure S1(h).

2.5 Calculating ECS and TCR

As discussed in the main text, we calculate ECS and TCR using

�F = �TCR�T ; �F = �ECS�T +�Q. (2)

This framework is similar to that used in previous studies [2]. Our �ECS is
equivalent to a “climate response parameter” (called ↵ in Gregory et. al.) that
measures the overall feedback strength of the climate system. The transient
parameter �TCR measures the “climate resistance”[3], or the sum of �ECS and
an ocean heat uptake e�cacy , if it is assumed that �Q = �T .
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We note that there are significant complications inherent in estimating both
ECS and TCR from these transient single-forcing or historical simulations. Nu-
merous studies (e.g. [14, 1, 5]) suggest that the net radiation lost to space is a
function of the surface temperature pattern, itself largely related to geographical
variations in ocean heat uptake. Winton et al[14] suggest that this may be sim-
ply incorporated into the global mean framework by multiplying �Q by an ocean
heat uptake e�cacy factor ✏. This factor, which should not be confused with the
ocean heat uptake e�ciency , reflects the changing relationship between global
mean �T and outgoing radiation [5] as the surface warming pattern evolves, and
is shown[14] to be greater than unity in most models. Thus, our sensitivity esti-
mates are likely to underestimate the “true” values, even when forcing e�cacy
is taken into account. We retain these definitions, however, for consistency with
earlier literature estimating ECS and TCR from historical observations [10, 7, 13].

3 E�cacies

The e�cacy of a particular driver is calculated from 5-member ensembles (6
in the “historical” case) forced only with that driver or collection of drivers.
We calculate the TCR (from temperature and forcing changes relative to pre-
industrial control) and ECS (from temperature, forcing, and ocean heat content
changes) as described in the main text. Transient and equilibrium e�cacies Ei

are defined as the quotient of the TCR or ECS calculated from a model run with
forcing i and the relevant previously published GISS-E2-R TCR and ECS values
(1.4�C and 2.3�C respectively).

In the iRF case, where annual forcing time series are available, TCR and ECS
are calculated by regressing ensemble-average decadal mean forcing or forcing
minus ocean heat content change rate against ensemble-average temperature
change. We assume that e�cacies remain roughly constant in time over the
historical period, an assumption bolstered by the high temporal correlation be-
tween ensemble average decadal mean temperature and forcing changes (with
correlation coe�cient over .99 for each single-forcing experiment). In the ERF
case, we have only one decade available; hence e�cacies are estimated using the
quotient of temperature change and forcing and/or OHC uptake changes.

The uncertainty in the e�cacies is estimated from individual members of the
single-forcing ensembles (Figure S2). Confidence intervals on the sample mean
are constructed using a student-t distribution with 4 degrees of freedom (5 in
the case of the 6-member historical ensemble).
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Figure S2: Transient (circles) and equilibrium e�cacies calculated for each en-
semble member in the single-forcing and historical ensembles. E�cacies are
calculated using (a) iRF and (b) ERF.
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Instantaneous RF (iRF) E↵ective RF (ERF)
Etransient Eequilibrium Etransient Eequilibrium

AA 1.42 (0.96,1.87) 1.45(1.21,1.68) 0.83 (0.69,0.98) 0.93(0.78,1.07)
LU 3.89 (-2.20,9.98) 1.16 (0.08,2.23) 1.81(-1.08,4.71) 0.11(-4.81,5.04)
Oz 0.6(0.31,0.90) 0.48(0.26,0.69) 0.53 (0.31,0.76) 0.56 (0.33,0.79)
Sl 1.53 (-1.16,4.22) 0.95 (0.32,1.58) 0.35(-0.50,1.19) 0.26 (-0.35,0.86)
Vl 0.56(0.30,0.81) 0.64(0.36,0.93) 0.45 (-0.07,0.98) 0.47(-0.20,1.13)
historical 0.87 (0.73,1.02) 0.71(0.63,0.78) 0.71 (0.67,0.75) 0.71 (0.69,0.72)

Table S1: Transient and equilibrium e�cacies (mean and 5-95% confidence inter-
vals) calculated from instantaneous (iRF) and e↵ective (ERF) radiative forcings.
Values significantly di↵erent from unity are in bold.

Table S1 lists the transient and equilibrium e�cacies calculated from the
GISS-E2-R single-forcing runs, along with uncertainties derived from the 5-
member ensembles for each forcing.

We expect the transient and equilibrium e�cacies of GHGs to be close to
unity, as GHG forcing is dominated by CO2 forcing. However, the GHG-only
simulations also contain methane, CFCs, and other greenhouse gases, which may
cause the e�cacy to di↵er from one [4]. Additionally, di↵erent manifestations of
internal variability, damped somewhat in the 5-member ensemble averages, result
in GHG TCR and ECS values that depart from 1.4�C and 2.3�C, respectively.
Finally, these deviations from published TCR/ECS values reflect the role of ocean
heat uptake e�cacy: as the pattern of surface warming evolves, outgoing flux
into space, and thus the rate at which heat must be taken up by the deep ocean,
changes.

Figure S4 shows the GHG-only TCR and ECS estimated from decadal mean
temperature, forcing, and OHC changes as a function of time. The spread
determined by the individual ensemble members becomes smaller toward the
end of the historical record as the forcing grows stronger, but the ECS and TCR
ranges encompass the CO2-only values. Rather than assume the e�cacy of GHGs
to be 1, we estimate GHG e�cacy and its uncertainty from the ensemble.
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Figure S3: (a): Transient and (b): equilibrium sensitivities estimated from 10-
year means of temperature and forcing change and OHC change (in the equilib-
rium case) relative to pre-industrial control values.
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Reference �T �Q FGHG FAA FLU FOz FSl FV l

S14 0.68± 0.1 0.55± 0.27 2.47± 0.12 �0.825(+0.3,�0.5) �0.085± 0.085 0.27± 0.14 0.03± 0.05 �0.125± 0.035
LC14 0.71± 0.15 0.36± 0.27 2.37± 0.57 �0.68(+0.8,�0.1) �0.1025± 0.1 0.27± 0.21 0.03± 0.05 0.0± 0.04
O13 0.75± 0.1 0.65± 0.27 2.4± 0.28 �0.7± 0.7 �0.15± 0.1 0.28± 0.17 0.05± 0.05 �0.12± 0.04

Table S2: Observational estimates from three references: S14[13], LC14[7], and
O13[10]. All forcings and OHC uptake rates are in units of watts per square
meter; temperature �T is in K.

4 Observations

Following previous work[10], we use the HadCRUT4 estimate[9] of the 2000–
2009 temperature change relative to the base period (1860–1879), yielding�T =
0.75±0.02 �C. For radiative forcing, we use IPCC best estimates and uncertainties
of the e↵ective radiative forcing (ERF) due to aerosols, solar and volcanic forc-
ing, well-mixed greenhouse gases, ozone, and land use changes from 2000–2009
relative to the base period. There is some ambiguity in these forcing definitions1,
and for completeness we will investigate the implications of e�cacies calculated
using both iRF and ERF.

In Figure S3, we illustrate how existing TCR/ECS calculations using combined
forcings are modified when e�cacies (calculated in the GISS perfect model frame-
work) are taken into account. We rely on three estimates[10, 13, 7], hereafter
O13, S14, and LC14. Di↵erences between our median estimates and confidence
intervals and the previously reported estimates likely result from our treatment
of forcing uncertainties. LC14 and O13 use the total radiative forcing in order
to estimate sensitivities; here we attempt to break down this total forcing into a
sum of contributions from individual forcing components, and treat uncertainties
in these individual forcings as independent. The values of relevant quantities are
shown in Table S2. In O13, present-day forcing estimates are defined as 2000–
2009 averages with respect to the 1860–1879 base period. We estimate these
forcings from the values and uncertainties given in IPCC AR5 WG1 Table AII.1.2,
Table 8.SM.5, and Table 8.6. The IPCC report lists 2011 forcing uncertainties,
which we scale by the ratio of 2009 forcing to 2011 forcing. We use ocean heat
content uptake rate and temperature change values reported in the O13 sup-
plementary material. The values used in LC14 are similar, although forcings are
defined as 1995–2011 averages with respect to a base period of 1959–1882. We
also use their di↵erent, lower values of ocean heat uptake rate and their stated

1For example, the best-estimate 1750–2011 iRF and ERF values given by the IPCC are
identical, except for aerosols (Table 8.SM.5 and Table 8.6).
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Percentile S14 (E=1) S14 (iRF) S14 (ERF) LC14 (E=1) LC14 (iRF) LC14 (ERF) O13 (E=1) O13 (iRF) O13 (ERF)

TCR (median) 1.4 2.0 1.9 1.3 1.6 1.7 1.3 1.8 1.8
5% 1.0 1.3 1.3 0.9 0.8 1.1 0.9 1.0 1.1
17% 1.2 1.5 1.5 1.0 1.1 1.3 1.0 1.2 1.4
83% 1.7 2.7 2.3 1.7 2.7 2.4 1.8 3.1 2.6
95% 2.0 3.6 2.7 2.4 5.5 3.9 2.3 5.9 3.6

ECS (median) 2.1 4.0 3.6 1.5 2.0 2.3 2.0 2.9 3.4
5% 1.4 2.1 2.2 1.0 -3.8 1.3 1.1 -14.1 1.4
17% 1.7 2.7 2.7 1.2 1.4 1.7 1.4 1.5 2.2
83% 2.7 6.7 5.3 2.2 3.8 3.8 3.2 6.9 6.8
95% 3.4 12.6 7.9 3.6 8.8 7.2 5.4 19.4 15.8

Table S3: TCR and ECS percentiles calculated using observational estimates
from three references: S14[13], LC14[7], and O13[10] assuming unit e�cacy
(E=1) and e�cacies calculated from instantaneous (iRF) and e↵ective (ERF)
radiative forcing.

temperature change. In S14, the responses to the sum of CMIP5 aerosol, ozone,
and land use forcings are estimated using the di↵erences between historical and
the sum of “historicalNat” and “historicalGHG” simulations, with forcings and
uncertainties determined from ACCMIP data.

In calculating TCR and ECS from these forcing, temperature, and ocean
heat uptake values, we draw samples from normal distributions in the case where
uncertainty is taken to be symmetric about the mean. Where the uncertainties
are not symmetric about the mean (e.g. anthropogenic aerosol forcings) samples
are drawn from a lognormal distribution.

Means, medians, and confidence intervals for TCR and ECS derived from
these observational estimates are shown in Table S3.

4.1 Incorporating estimated e�cacies

In order to take forcing e�cacy into account, we scale each observed or simulated
forcing �Fi by the calculated e�cacy Ei. This modifies Eq (1) in the main text:

n
forcingsX

i

Ei�Fi = �TCR�T ;
n
forcingsX

i

Ei�Fi = �ECS�T +�Q. (3)

In the perfect model framework, this results in a revision of the best guess TCR
(calculated from the sum of single-forcing experiments) from 1.0�C to 1.4�C and
of ECS from 1.4�C to 2.4�C (Figure S4).
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Figure S4: (a): Transient and (b): equilibrium sensitivities estimated from 10-
year means without (dark gray) and with (light gray) e�cacy scaling.
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